45 research outputs found

    EUV Dimmings as a Diagnostic of CMEs and Related Phenomena

    Get PDF
    Large-scale coronal EUV dimmings, developing on timescaJes of minutes to hours in association with a flare or filament eruption, are known to exhibit a high correlation with coronal mass ejections. While most observations indicate that the decrease in emission in a dimming is due, at least in part, to a density decrease, a complete understanding requires us to examine at least four mechanisms that have been observed to cause darkened regions in the corona: 1) mass loss, 2) cooling, 3) heating, and 4) absorption/obscuration. Recent advances in automatic detection, observations with improved cadence and resolution, multi-viewpoint imaging, and spectroscopic studies have continued to shed light on dimming formation, evolution, and recovery. However, there are still some outstanding questions, including 1) Why do some CMEs show dimming and some do not? 2) What determines the location of a dimming? 3) What determines the temporal evolution of a dimming? 4) How does the post-eruption dimming connect to the ICME? 5) What is the relationship between dimmings and other CME-associated phenomena? The talk will emphasize the different formation mechanisms of dimmings and their relationship to CMEs and CME-associated phenomena

    Highlights of Space Weather Services/Capabilities at NASA/GSFC Space Weather Center

    Get PDF
    The importance of space weather has been recognized world-wide. Our society depends increasingly on technological infrastructure, including the power grid as well as satellites used for communication and navigation. Such technologies, however, are vulnerable to space weather effects caused by the Sun's variability. NASA GSFC's Space Weather Center (SWC) (http://science.gsfc.nasa.gov//674/swx services/swx services.html) has developed space weather products/capabilities/services that not only respond to NASA's needs but also address broader interests by leveraging the latest scientific research results and state-of-the-art models hosted at the Community Coordinated Modeling Center (CCMC: http://ccmc.gsfc.nasa.gov). By combining forefront space weather science and models, employing an innovative and configurable dissemination system (iSWA.gsfc.nasa.gov), taking advantage of scientific expertise both in-house and from the broader community as well as fostering and actively participating in multilateral collaborations both nationally and internationally, NASA/GSFC space weather Center, as a sibling organization to CCMC, is poised to address NASA's space weather needs (and needs of various partners) and to help enhancing space weather forecasting capabilities collaboratively. With a large number of state-of-the-art physics-based models running in real-time covering the whole space weather domain, it offers predictive capabilities and a comprehensive view of space weather events throughout the solar system. In this paper, we will provide some highlights of our service products/capabilities. In particular, we will take the 23 January and the 27 January space weather events as examples to illustrate how we can use the iSWA system to track them in the interplanetary space and forecast their impacts

    ISEP: A Joint SRAG/CCMC Collaboration to Improve Mitigation of Space Weather Effects on Crew Health in the Exo-LEO Era

    Get PDF
    The Space Radiation Analysis Group (SRAG) at Johnson Space Center (JSC) is tasked with monitoring changes to space weather and mitigating any resultant impacts to crew health and safety. As human spaceflight goals extend from Low-Earth Orbit (LEO) missions like the International Space Station (ISS) to the moon, Mars and beyond, SRAG will need to update their current approach for crew monitoring of and protection from radiation exposure due to energetic Solar Particle Events (ESPEs). Challenges faced in planning exo-LEO missions include the lack of protection from the Earths geomagnetic field employed by the ISS in addition to limited communication capability between the crew and the ground. In the event of an ESPE, the current ISS trajectory ensures that the vehicle is only traveling through fields of higher radiation exposure for a brief period of time; the Earths geomagnetic field prevents the penetration of the high-energy particles of concern throughout the majority of the orbit. Exo-LEO missions, on the other hand, require that the vehicle travel through free space, exposing vehicle and crew to the full impact of the ESPE. NASA has combined multiple approaches to resolve this radiation exposure issue. New vehicles are designed to take advantage of advances in particle transport modeling capabilities and shielding technology, allowing redistribution of mass throughout the vehicle to areas of thinner shielding when the energetic particle flux has increased to levels of concern. Although vehicle shielding is an important aspect of radiation exposure protection, there is a continued requirement to monitor and predict the space weather environment. To this end, SRAG maintains a console position in Mission Control with 24/7 mission support capability. In the event of increased solar activity, SRAG collaborates with the Flight Control Team (FCT) to determine if crew action (i.e., shelter) is required. During any increase in solar activity, the FCT needs three pieces of information to effectively decide the crew response in light of other required mission tasks: if an event (ESPE) will occur, how intense an observed event will be, and how long will an observed event will last. An ideal alert system limits false alarms, therefore causing the crew to take action unnecessarily, without ignoring events that pose a hazard to the crew. SRAGs current operational concept for ISS missions focuses on short-term forecasts, best described as now-casting. Console operators are in daily communication with the Space Weather Prediction Center (SWPC) for situational awareness purposes. When conditions exist that may lead to increased solar activity, operators receive notifications from SWPC. In the case of a well-connected ESPE, the console operator may only have on the order of minutes to several hours to notify the FCT of the event and provide a recommendation for crew action. As NASA shifts to exo-LEO missions, the increased time in free space as well as the reduced ability to communicate with the crew will force a transition in crew protection strategy that emphasizes improvments to both the accuracy and the lead time in forecasting capabilities

    Longitudinal conjunction between MESSENGER and STEREO A: Development of ICME complexity through stream interactions

    Full text link
    We use data on an interplanetary coronal mass ejection (ICME) seen by MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and STEREO A starting on 29 December 2011 in a near‐perfect longitudinal conjunction (within 3°) to illustrate changes in its structure via interaction with the solar wind in less than 0.6 AU. From force‐free field modeling we infer that the orientation of the underlying flux rope has undergone a rotation of ∼80° in latitude and ∼65° in longitude. Based on both spacecraft measurements as well as ENLIL model simulations of the steady state solar wind, we find that interaction involving magnetic reconnection with corotating structures in the solar wind dramatically alters the ICME magnetic field. In particular, we observed a highly turbulent region with distinct properties within the flux rope at STEREO A, not observed at MESSENGER, which we attribute to interaction between the ICME and a heliospheric plasma sheet/current sheet during propagation. Our case study is a concrete example of a sequence of events that can increase the complexity of ICMEs with heliocentric distance even in the inner heliosphere. The results highlight the need for large‐scale statistical studies of ICME events observed in conjunction at different heliocentric distances to determine how frequently significant changes in flux rope orientation occur during propagation. These results also have significant implications for space weather forecasting and should serve as a caution on using very distant observations to predict the geoeffectiveness of large interplanetary transients.Key PointsICME complexity increases due to interaction with corotating structures in the solar windMagnetic reconnection between ICME and HPS/HCS alters the magnetic topology of the ICME flux ropeCaution on using distant observations to predict the geoeffectiveness of interplanetary transientsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134123/1/jgra52739.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134123/2/jgra52739_am.pd

    Simulation of the 23 July 2012 Extreme Space Weather Event: What if This Extremely Rare CME Was Earth Directed?

    Get PDF
    Extreme space weather events are known to cause adverse impacts on critical modern day technological infrastructure such as high-voltage electric power transmission grids. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast coronal mass ejection (CME) that traveled 0.96 astronomical units (approx. 1 AU) in about 19 h. Here we use the SpaceWeather Modeling Framework (SWMF) to perform a simulation of this rare CME.We consider STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of this study is to examine what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active INTERMAGNET magnetometer sites. Simulation results show that while modeled global SYM-H index, a high-resolution equivalent of the Dst index, was comparable to previously observed severe geomagnetic storms such as the Halloween 2003 storm, the 23 July CME would have produced some of the largest geomagnetically induced electric fields, making it very geoeffective. These results have important practical applications for risk management of electrical power grids

    Quantifying errors in 3D CME parameters derived from synthetic data using white-light reconstruction techniques

    Get PDF
    Current efforts in space weather forecasting of CMEs have been focused on predicting their arrival time and magnetic structure. To make these predictions, methods have been developed to derive the true CME speed, size, position, and mass, among others. Difficulties in determining the input parameters for CME forecasting models arise from the lack of direct measurements of the coronal magnetic fields and uncertainties in estimating the CME 3D geometric and kinematic parameters after eruption. White-light coronagraph images are usually employed by a variety of CME reconstruction techniques that assume more or less complex geometries. This is the first study from our International Space Science Institute (ISSI) team “Understanding Our Capabilities in Observing and Modeling Coronal Mass Ejections”, in which we explore how subjectivity affects the 3D CME parameters that are obtained from the Graduated Cylindrical Shell (GCS) reconstruction technique, which is widely used in CME research. To be able to quantify such uncertainties, the “true” values that are being fitted should be known, which are impossible to derive from observational data. We have designed two different synthetic scenarios where the “true” geometric parameters are known in order to quantify such uncertainties for the first time. We explore this by using two sets of synthetic data: 1) Using the ray-tracing option from the GCS model software itself, and 2) Using 3D magnetohydrodynamic (MHD) simulation data from the Magnetohydrodynamic Algorithm outside a Sphere code. Our experiment includes different viewing configurations using single and multiple viewpoints. CME reconstructions using a single viewpoint had the largest errors and error ranges overall for both synthetic GCS and simulated MHD white-light data. As the number of viewpoints increased from one to two, the errors decreased by approximately 4° in latitude, 22° in longitude, 14° in tilt, and 10° in half-angle. Our results quantitatively show the critical need for at least two viewpoints to be able to reduce the uncertainty in deriving CME parameters. We did not find a significant decrease in errors when going from two to three viewpoints for our specific hypothetical three spacecraft scenario using synthetic GCS white-light data. As we expected, considering all configurations and numbers of viewpoints, the mean absolute errors in the measured CME parameters are generally significantly higher in the case of the simulated MHD white-light data compared to those from the synthetic white-light images generated by the GCS model. We found the following CME parameter error bars as a starting point for quantifying the minimum error in CME parameters from white-light reconstructions: Δθ (latitude)=6°-3°+2°, Δϕ (longitude)=11°-6°+18°, Δγ (tilt)=25°-7°+8°, Δα(half-angle)=10°-6°+12°, Δh (height)=0.6-0.4+1.2 R⊙, and Δκ (ratio)=0.1-0.02+0.03.Fil: Verbeke, Christine. Royal Observatory Of Belgium (rob);Fil: Mays, M. Leila. NASA Goddard Space Flight Center. Heliophysics Science Division; Estados UnidosFil: Kay, Christina. NASA Goddard Space Flight Center. Heliophysics Science Division; Estados Unidos. The Catholic University of America; Estados UnidosFil: Riley, Pete. Predictive Science Inc.; Estados UnidosFil: Palmerio, Erika. Predictive Science Inc.; Estados UnidosFil: Dumbović, Mateja. University of Zagreb; CroaciaFil: Mierla, Marilena. Institute of Geodynamics of the Romanian Academy; Rumania. Royal Observatory of Belgium; BélgicaFil: Scolini, Camilla. University of New Hampshire; Estados Unidos. University Corporation for Atmospheric Research; Estados UnidosFil: Temmer, Manuela. University of Graz; AustriaFil: Paouris, Evangelos. George Mason University; Estados Unidos. University Johns Hopkins; Estados UnidosFil: Balmaceda, Laura Antonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; Argentina. George Mason University; Estados Unidos. NASA Goddard Space Flight Center; Estados UnidosFil: Cremades Fernandez, Maria Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; ArgentinaFil: Hinterreiter, Jürgen. University of Graz; Austri
    corecore